
RPPanalyzer (Version 1.2)

Analyze reverse phase protein array data

User‘s Guide

Heiko Mannsperger1, Stephan Gade1,
Silvia von der Heyde2 and Daniel Kaschek3

1German Cancer Research Center, Heidelberg, Germany
2Medical Statistics, University Medical Center Göttingen, Germany

3Institute of Physics, Freiburg University, Germany

November 22, 2024

Contents
1 Introduction 2

2 Data preparation 2
2.1 Sample description . 2

2.1.1 Columns plate, row and column . 4
2.1.2 Column sample_type . 4
2.1.3 Column sample . 4
2.1.4 Columns concentration, dilution and dilSeriesID 4

2.2 Slide description . 5
2.2.1 Column gpr . 5
2.2.2 Columns pad, slide, incubation_run and spotting_run 5
2.2.3 Columns target and AB_ID . 5

2.3 Image analysis result files . 6

3 Data pre-processing 6
3.1 Read data . 6
3.2 Export data as text file . 7
3.3 Correct for background intensities . 7
3.4 Data normalization with total protein dye 9
3.5 Quality control plots . 9

1

4 Additional correction, quantification and normalization methods 10
4.1 Correct for background intensities . 10
4.2 Quantify concentration . 10
4.3 Data normalization . 11

4.3.1 Total protein dyes . 11
4.3.2 Housekeeping proteins . 11
4.3.3 Median normalization . 12
4.3.4 Protein quantification assays . 12

5 Array and data selection 12

6 Visualizations 13
6.1 Time courses . 13
6.2 Boxplots . 14
6.3 Correlation plots . 15
6.4 Heatmaps . 15

7 Appendix 16

1 Introduction
In systems biology as well as in biomarker discovery reverse phase protein arrays (RPPAs)
have emerged as a useful tool for the large-scale analysis of protein expression and protein
activation (Paweletz et al., 2001). The method follows the basic principle of printing large
numbers of raw protein extracts in parallel on a solid phase carrier to form a single array. Mul-
tiple slides are printed in parallel and each (sub)array is probed with a different monospecific
antibody. To quantify protein expression or protein activation detectable signals are generated
via fluorescence, dye precipitation, or chemiluminescence.
RPPanalyzer is a compact tool, developed to perform the basic data analysis on RPPA data
and to visualize the resulting biological information. It will help you with the evaluation of
standard RPPA experiments. This vignette is a step by step instruction how to use the RPP-
analyzer especially written for people that are usually working in the lab and are not familiar
using R. Figure 1 shows an overview of the data analysis steps.

2 Data preparation
To avoid errors during data analysis it is very important to prepare the input data exactly in
the format as described in the following sections. It is not necessary to adjust the benchwork
to the software but to describe exactly what you have done in the lab.

2.1 Sample description
Every information concerning the samples has to be stored in a tab delimited text file and
named sampledescription.txt (use spreadsheet software like MS Excel or OOo Spread-

2

Figure 1: Recommended workflow for the analysis or reverse phase protein array data using
the RPPanalyzer package

3

sheet to generate the table). The sampledescription file contains eight mandatory columns that
are required to identify the samples (described in detail below) and optional columns holding
any information describing the samples in more detail. To select sample groups for separate
analysis it is of advantage to store every type of information in a separate column. To access
example files load the RPPanalyzer package:

> library(RPPanalyzer)

An example sampledescription file describing a serially diluted sample set is included.

> ## define path to example files
> dataDir <- system.file("extdata",package="RPPanalyzer")
> ## change working directory
> setwd(dataDir)
> ## store example sample description in a variable
> sampledescription <- read.delim("sampledescription.txt")
> ## show sample description header
> head(sampledescription)

2.1.1 Columns plate, row and column

These columns describe the location of the samples in the spotting source well plate. The
column plate contains the number of the source well plate stored as an integer (1, 2, 3, ...).
The Column row contains capital letters (e.g. A-P) and the column column integers (e.g. 1-24)
to identify the position within one source well plate.

2.1.2 Column sample_type

The column sample_type holds information about the type of the appropriate sample. En-
tries ‘measurement’ indicate an experimental measurement whereas ‘control’ denotes spots
for investigation of antibody binding dynamics. Accordingly ‘neg_control’ is reserved for
control spots (e.g. BSA) which can be used to investigate unspecific binding. Finally, ‘blank’
indicates empty spots (e.g. only buffer).

2.1.3 Column sample

Provide an identifier for your samples in this column. It is of advantage to keep this term
unique in case of clinical samples, for cell culture experiments put in the name of the cell line
and add more columns describing every experimental parameter.

2.1.4 Columns concentration, dilution and dilSeriesID

The column concentration provides numeric data with information of the sample concentra-
tion. In case of serially diluted samples describe the dilution steps (starting with a 1 for the
highest concentration) in column dilution. The column dilSeriesID contains the values that
should be used for dilution intercept correction via correctDilinterc, e.g. cell line

4

names. Its values must be matchable in ‘control’ and ‘measurement’. NA values denote that
control values should not be used. In case of more than one unique value of this parame-
ter, it will also be used as predictor variable in the linear model of correctDilinterc
(exportNo=4).

2.2 Slide description
Write all information describing the slides and arrays in a tab delimited text file and name
it slidedescription.txt. Seven obligatory columns have to be provided and any op-
tional column can be added.

> ## change directory to example files
> dataDir <- system.file("extdata",package="RPPanalyzer")
> setwd(dataDir)
> ## store example slide description in a variable
> slidedescription <- read.delim("slidedescription.txt")
> ## show slide description header
> head(slidedescription)

2.2.1 Column gpr

To find the GenePix result files (gpr files) in the current folder, the terms stored in the column
gpr are used as identifier. That means you have to use exactly identical terms for the names
of the gpr files and in the gpr column. If you print multiple arrays on one slide describe the
arrays using the same order like on the slide. That means start with describing the uppermost
array, than the array below in the next row of the slidedescription file and so on.

2.2.2 Columns pad, slide, incubation_run and spotting_run

The column pad holds the number of the pad or array on the slides. The column slide holds the
number of the slide. Arrays that were analyzed in parallel are identified via the incubation_run
column. Make sure that you have exact one blank array (incubated with 2nd antibodies only)
for each incubation run. The column spotting_run specifies the arrays that were printed in
parallel. You have to provide at least one array with normalizer signals per print run for
the normalization method housekeeping. In case of normalizing using a protein dye (method
proteinDye), a whole slide has to be provided.

2.2.3 Columns target and AB_ID

In order to be able to assign the right proteins to the arrays the column target holds the protein
name and AB_ID the corresponding antibody ID. Please use only regular characters (letters,
digits, ‘_’, and ‘-’).

5

2.3 Image analysis result files
So far the software is restricted to read GenePix result files (gpr files). For spot identification
grid in the image analysis software (here GenePix) use the GenePix array list (gal file) that is
produced by the spotting device (e.g. Aushon 2470 or ArrayJet).

3 Data pre-processing
Among all possible correction and normalization methods prior to the actual data analysis,
we recommend the correction based on serially diluted samples via correctDilinterc,
combined with normalization according to total protein concentration via FCF.
These important pre-processing steps are implemented in the dataPreproc function. It
imports the raw data, corrects and normalizes it and generates plots for quality checks. The
function returns a list with four different elements. The first element contains four raw data
elements, i.e. foreground and background expression matrices as well as data frames hold-
ing the array and sample description. The second element is analogously built up but with
foreground expression data corrected to dilution intercepts via the correctDilinterc
function. Therefore the default input parameter correct must stay ‘both’. In case of ‘none’,
the measurements stay as in rawdat. In case of ‘noFCF’, the FCF measurements stay as in
rawdat.
In case of resulting negative values the absolute minimum plus one is added. The third element
is also structured like the first two but holds dilution intercept corrected and FCF normalized
foreground data. The last element defines the directory for storing the generated outputs. All
output files are stored in a folder labelled with the date of analysis at the input files location.
This also holds for the raw data, exported to a text file in table format.
The integrated functions, which can also be applied separately, are explained in the following
subsections. For the usage of the dataPreproc function we refer to the help page which
can be accessed with

> ?dataPreproc

> ## change directory to example files
> dataDir <- system.file("extdata",package="RPPanalyzer")
> setwd(dataDir)
> ## pre-process data
> preprocessedData <- dataPreproc(dataDir=dataDir,blocks=12,
+ spot="aushon",exportNo=2,correct="both")

3.1 Read data
Change to the directory where your data files are stored. This can be done using the R work-
ing menu (File > change directory...) or by using the command setwd. For usage within
dataPreproc, this is defined in the parameter dataDir.

> setwd(dataDir)

6

The data analysis starts with reading the data from the current working directory. The ar-
gument blocksperarray gives the number of blocks that are printed in one array. For usage
within dataPreproc, this is defined in the parameter blocks. This number is used to sep-
arate multiple arrays on one slide that are incubated individually. With the argument spotter
the package takes in account the difference in the column ID which is used to identify the
samples. To get information about the manually flagged spots, set the printFlags argument
to ‘TRUE’ to export these flags to CSV file. For usage within dataPreproc, the spotter
information has to be provided in the parameter spot.

> dataDir <- system.file("extdata",package="RPPanalyzer")
> setwd(dataDir)
> rawdata <- read.Data(blocksperarray=12,spotter="aushon",
+ printFlags=FALSE)

After reading the RPPA data, an R-object (list with four elements) is created. The first element
holds a matrix with the foreground (expression) intensity data, the second a matrix with back-
ground intensities. The columns of the matrix are representing the individual arrays described
by the third element of the data list, a data frame holding the array information. The rows of
the matrix are described by the fourth element holding the sample information.

3.2 Export data as text file
It is possible to export the RPPA data set as tab delimited text file at any point during data
analysis for further inspection using spreadsheet software. The data will be stored in two files,
representing the expression and background or expression and error, depending on the analysis
step. The rows of the table will be annotated with sample information, the columns with array
information.

> write.Data(rawdata,FileNameExtension="test_data")

The text files will be stored in the current working directory. For usage within dataPreproc,
the tables are stored in the related analysis output folder.

3.3 Correct for background intensities
To correct for background signals, we recommend to apply the correctDilinterc func-
tion either directly or within the data pre-processing function dataPreproc.
It derives intercepts of dilution series in dependence of dilSeriesID, defined in the sampledescrip-
tion file, as well as slide, pad, incubation_run and spotting_run, defined in the data frame
holding the array information.
To apply this function, a dilution series of a representative sample has to be spotted on each
slide in addition to the samples of interest. The latter are defined as ‘measurement’ in the
sampledescription.txt, while the serially diluted samples are defined as ‘control’. To
link a sample of interest to the respective control dilution series, the same identifier has to be
entered in the column dilSeriesID of the sampledescription.txt.

7

A smoothing spline is used to extrapolate to zero. Nonparametric bootstrap is used to estimate
uncertainty of the intercept estimate. Linear models are applied to the intercepts as response
variables in dependence of diverse predictors, namely simply a constant, the antibody, anti-
body + slide or antibody + slide + sample (dilSeriesID). Via Analysis of Variances (ANOVA)
it is tested which model fits best. The estimated uncertainties of the intercepts are used as
weights.
The user should use the provided bar plot (‘anovaIntercepts_Output.pdf’) of the residual sum
of squares (RSS) to choose the model with the smallest RSS, favouring less complexity. For
example, if the bars of model ‘antibody + slide’ and ‘antibody + slide + sample’ are the small-
est and equally high, model ‘antibody + slide’ should be preferred, as the sample does not
provide additional information. The chosen model then is used to predict the intercepts which
are subtracted from the original foreground expression.
For usage within dataPreproc, the model information has to be provided in the parameter
exportNo. The default is set to three, i.e. ‘antibody + slide’. The function additionally gener-
ates plots of the dilution series and related intercept estimations (‘getIntercepts_Output.pdf’)

> ## import raw data
> fgRaw.tmp <- read.delim("test_dataexpression.txt",stringsAsFactors=FALSE,
+ row.names=NULL,header=TRUE)
> fgRaw <- read.delim("test_dataexpression.txt",
+ skip=max(which(fgRaw.tmp[,1]==""))+1,
+ stringsAsFactors=FALSE,row.names=NULL,header=TRUE)
> ## remove NAs
> fgNAVec <- which(is.na(fgRaw[,"ID"]))
> if(length(fgNAVec) > 0){
+ fgRaw <- fgRaw[-fgNAVec,]
+ }
> colnames(fgRaw) <- sub("X","",gsub("\\.","-",colnames(fgRaw)))
> ## correct data for BG noise
> correctedData <- correctDilinterc(
+ dilseries=fgRaw[which(fgRaw$sample_type=="control" &
+ !is.na(fgRaw$dilSeriesID)),],
+ arraydesc=rawdata$arraydescription,
+ timeseries=fgRaw[which(fgRaw$sample_type=="measurement"),],exportNo=2)
> ## correct negative values
> if(min(correctedData[,colnames(rawdata$arraydescription)]) < 0){
+ correctedData[,colnames(rawdata$arraydescription)] <-
+ correctedData[,colnames(rawdata$arraydescription)] +
+ abs(min(correctedData[,colnames(rawdata$arraydescription)]))+1
+ }

Further information on correction for background intensities is provided in later sections.

8

3.4 Data normalization with total protein dye
Within dataPreproc, the background corrected signal intensities are normalized spot-wise
to the total protein concentration using the Fast Green FCF method (Loebke et al., 2007).
In short, replicate slides for one print run in an experiment are stained with the total protein dye
‘Fast Green FCF’ to determine the total protein concentration of each individual lysate spot.
In case of multiple arrays on one slide, the normalization is working array (pad) wise. That
means each array is normalized by the corresponding array on the normalizer slide. The nor-
malization method proteinDye of normalizeRPPA requires one normalizer slide per print
run which will be identified as ‘protein’ in the target column of the slidedescription file.
A correction factor is determined for each individual spot that reflects the deviation of the
protein concentration determined from the median of all FCF-spots. The target protein spe-
cific signal intensities are then corrected for technical variance by division by the correc-
tion factors. Afterwards the corrected spot intensities can be multiplied by the median of the
corresponding normalizer subarray to scale the data back to the native range. The function
normalizeRPPA within dataPreproc uses the method proteinDye and returns normal-
ized values in native scale (instead of log2), setting the vals attribute to ‘native’. Further
information on normalization methods is provided in later sections.

3.5 Quality control plots
Signal validity and antibody dynamics can be checked by comparing the target specific signals
to the corresponding blank value of the serially diluted control samples (column sample_type
in the sampledescription file). For this function it is necessary to have one blank array (in-
cubated only with secondary antibodies) for each incubation run (column incubation_run in
the slidedescription file). We included an additional data set containing an experiment with
siRNA transfected cell lines to demonstrate the plotting routines.

> ## load data set
> dataDir <- system.file("data",package="RPPanalyzer")
> setwd(dataDir)
> load("HKdata.RData")
> data(HKdata)

> plotQC(HKdata,file="control_samples.pdf",arrays2rm=c("protein"))

Within dataPreproc, this function is applied to the raw signal intensities.
Additionally you can plot the blank signals against the target signal of the measurements
(column sample_type in the sampledescription file).

> plotMeasurementsQC(HKdata,file="control_measurements.pdf",
+ arrays2rm=c("protein"))

Within dataPreproc, this function is applied to the background corrected and FCF nor-
malized signal intensities.
To check the data distribution for each measured target you can generate a PDF file with a
quantile-quantile plot. This can be done before and after normalization of the data.

9

> plotqq(HKdata,fileName="qqplot_measurements.pdf")

Within dataPreproc, this function is applied to the background corrected and FCF nor-
malized signal intensities.

4 Additional correction, quantification and normalization
methods

In this section we introduce further data processing functions, apart from the recommended
ones integrated in dataPreproc. Those may be appropriate in special situations.

4.1 Correct for background intensities
To correct for background signals, you can use all methods from the backgroundCorrect
functions of the limma package (Smyth, 2005) or use the method addmin which subtracts the
local background and adds a small constant value to avoid negative signals.

> dataBGcorrected <- correctBG(HKdata,method="normexp")

4.2 Quantify concentration
In case of serially diluted samples you have to calculate the (relative) concentration of the
samples. You can use either a linear model (function calcLinear) or a logistic three
parameter model (function calcLogistic). We recommend to use the Serial Dilution
Curve algorithm (Zhang et al., 2009) which is the most recent development and produces
very robust concentration values (function calcSdc). Another possibility of quantification
is the SuperCurve package (Coombes et al., 2009) which can be accessed using the wrap-
per function calcSuperCurve. This function is not part of the RPPanalyzer package, but
can be found in the appendix of this vignette. To use the calcSuperCurve function you
have to download and install the package from the MD Anderson Bioinformatics home page
(http://bioinformatics.mdanderson.org/Software/OOMPA/).

> ## To run the serial dilution curve algorithm it is neccessary
> ## to aggregate replicate spots first.
> dataDir <- system.file("data",package="RPPanalyzer")
> setwd(dataDir)
> load("ser.dil.samples.RData")
> data(ser.dil.samples)
> ser.dil_median <- sample.median(ser.dil.samples)
> ## calculate concentration (for the attributes see help pages)
> c_Values <- calcSdc(ser.dil_median,D0=2,sel=c("measurement"),
+ dilution="dilution")

For the arguments of the calcSdc function we refer to the help page which can be accessed
with

> ?calcSdc

10

http://bioinformatics.mdanderson.org/Software/OOMPA/

4.3 Data normalization
Normalization is a crucial step in RPPA data analysis to ensure sample comparability and to
yield high quality data. The reference value to normalize RPPA is the total protein amount per
spot. There are different possibilities to generate this reference value that will be described in
detail below. The following signal normalization steps can be applied directly to background
corrected data if the samples are spotted in only one concentration. For serially diluted samples
the normalization step is performed on the quantified data. Otherwise the information of the
signal dynamics in one dilution series is lost.

4.3.1 Total protein dyes

The most common method to normalize RPPA data is to stain one slide representative for one
print run with a total protein dye like Fast Green FCF (also integrated in dataPreproc),
Sypro Ruby or colloidal Gold (see also Spurrier et al. (2008)).
After calculating the log2 intensities, the normalizer value can simply be subtracted from the
target signal to obtain the relative protein expression. In case of multiple arrays on one slide
the normalization is working array wise (pad wise). That means each array is normalized
by the corresponding array on the normalizer slide. The normalization method proteinDye
requires one normalizer slide per print run which will be identified as ‘protein’ in the target
column of the slidedescription file. If you want to obtain values in native scale (instead of log2
scale) you have to change the vals attribute to ‘native’.

> ## load data set
> dataDir <- system.file("data",package="RPPanalyzer")
> setwd(dataDir)
> load("HKdata.RData")
> data(HKdata)
> ## normalize
> norm_values_pd <- normalizeRPPA(HKdata,method="proteinDye",
+ vals="logged")

4.3.2 Housekeeping proteins

Proteins that are expected to be expressed at a constant level, not effected by the experimental
conditions, can be used as housekeeping proteins for normalization. This method is estab-
lished for quantitative Western blots and can be utilized to normalize RPPA. To obtain the
normalizer value, the mean of all arrays identified with the ‘normalizer’ attribute (column
target in the slidedescription file) is calculated within one print run.

> norm_values_hk <- normalizeRPPA(HKdata,method="housekeeping",
+ normalizer="housekeeping",vals="logged")

In case of a fluorescent readout it is possible to incubate antibodies against housekeeping pro-
teins after the target specific antibodies and label them for detection at a different wavelength.
Using this approach it is possible to generate the normalizer signal from the same spot as

11

the target specific signal. This enables to correct for spotting imprecisions that could not be
identified on just one (or a few) representative slides per print run.

> norm_values_hk_sbs <- normalizeRPPA(HKdata,method="spotbyspot",
+ normalizer="housekeeping",vals="logged")

4.3.3 Median normalization

Assuming that all proteins measured in the RPPA experiment are reflecting the total protein
amount this can be used as a normalizer value. The median value of all protein signals of each
spot or sample is calculated and used as normalizer signal.

> norm_values_row <- normalizeRPPA(HKdata,method="row")

4.3.4 Protein quantification assays

The method extValue provides the possibility to utilize protein concentration values deter-
mined with protein quantification assays (e.g. Bradford, BCA) as normalizer value. The
protein concentration has to be provided in a column in the sample description file and will be
accessed with the attribute useCol. This method needs very precise spotting device since the
value does not include spotting imprecisions.

> norm_values_eV <- normalizeRPPA(HKdata,method="extValue",
+ useCol="concentration",vals="logged")

> ## all normalization methods were performed on a sample set that was
> ## spotted in replicates (not serially diluted).
> ## In this case you can aggregate the replicate spots after the
> ## normalization:
> norm_data <- sample.median(norm_values_pd)

5 Array and data selection
To select a sample group of interest for further analysis it is possible to access the samples
using any column (attribute params) of the sampledecription and define the samples of interest
(attribute sel).

> selectedSamples <- select.sample.group(norm_data,
+ params=list("replicate"=c("1")))

Furthermore, it is possible to exclude arrays from further analysis which you have identified
as not valid or not necessary. They will be identified using the target information in the
slidedescription file.

> selectedData <- remove.arrays(selectedSamples,param="target",
+ arrays2rm=c("protein","blank","housekeeping"))

12

6 Visualizations
RPPanalyzer provides several standard visualization tools to get an overview of the biological
relevance of the data set.

6.1 Time courses
RPPAs allow the measurement of the phosporylation status of proteins. Therefore they capac-
itate, in contrast to mRNA based techniques, to investigate signaling pathways in a time re-
solved manner. Such time course experiments can be visualized with the plotTimeCourse
or plotTimeCourseII function.
The plotTimeCourse function will generate a PDF in the current working directory. The
argument tc.identifier combines the sample attributes which will identify the individual time
course experiments whereas the plot.split argument will be used to define which time course
experiments will be plotted in one graph. The argument plotformat defines the way the data
will be plotted: ‘rawdata’ will plot the time points connected with dashed lines, ‘splines’ will
plot a smoothed spline calculated using the package gam (Hastie, 2009). To plot both set
plotformat to ‘both’.

> ## load a time course data set
> dataDir <- system.file("data",package="RPPanalyzer")
> setwd(dataDir)
> load("dataII.RData")
> data(dataII)
> ## plot time course data
> plotTimeCourse(dataII,tc.identifier=c("sample","stimulation",
+ "inhibition","stim_concentration"),
+ plot.split="experiment",file="Timeplot.pdf",
+ arrays2rm=c("protein","Blank"),plotformat="spline")

The plotTimeCourseII function visualizes time courses after data transformation by the
getErrorModel and averageData functions, which estimate noise in the data and av-
erage replicates.

> ## pre-process the data
> dataDir <- system.file("extdata",package="RPPanalyzer")
> setwd(dataDir)
> res <- dataPreproc(dataDir=dataDir,blocks=12,spot="aushon",exportNo=2)
> ## remove arrays
> normdat_rm <- remove.arrays(res$normdat,param="target",
+ arrays2rm=c("protein","blank"))
> ## select samples and export data
> sel_sampels_A549 <- select.sample.group(normdat_rm,
+ params=list("cell_line"="A549"),
+ combine=F)

13

> write.Data(sel_sampels_A549,FileNameExtension="HGF_sample_data_A549")
> ## read selected data
> dataexpression_1 <- read.table("HGF_sample_data_A549expression.txt")
> ## use getErrorModel function
> dataexpression_2 <- getErrorModel(dataexpression_1,verbose=FALSE)
> ## use averageData function
> dataexpression_3 <- averageData(dataexpression_2,
+ scaling=c("slide","replicate"),
+ distinguish=c("cell_line","treatment"))
> ## plot time course data
> plotTimeCourseII(dataexpression_3,
+ filename="timecourse_HGF_sample_data_A549.pdf",
+ legpos="top",xname="time [min]",yname="signal [a.u.]",
+ linecolor=c("red","green","blue","black","orange","grey"))

6.2 Boxplots
The (differential) expression of proteins between distinct groups can be visualized in boxplots,
including related p-values. Therefore, the function rppa2boxplot offers two possible test-
ing scenarios. You can compare expression values to a reference group (control), if provided,
via a Wilcoxon rank sum test. Otherwise a test on general differences is performed via a
Kruskal-Wallis rank sum test. For simple boxplots of groups without any statistical testing,
the function simpleBoxplot can be applied. A PDF is generated in all cases and saved in
the current working directory.

> ## load data set
> dataDir <- system.file("data",package="RPPanalyzer")
> setwd(dataDir)
> load("dataIII.RData")
> data(dataIII)
> ## aggregate replicates
> dataIII_median <- sample.median(dataIII)
> ## draw simple boxplot and generate PDF
> simpleBoxplot(x=dataIII_median,param="rank",
+ orderGrp=c("vx","zx","yzr","rxi"),
+ file="simpleBoxplot.pdf")
> ## draw boxplot, test for (differential) expression in comparison to
> ## control group "vx", and generate PDF
> rppa2boxplot(x=dataIII_median,param="rank",control="vx",
+ orderGrp=c("vx","zx","yzr","rxi"),
+ file="wilcoxonBoxplot.pdf")
> ## draw boxplot, test for general differences in group expressions,
> ## and generate PDF
> rppa2boxplot(x=dataIII_median,param="rank",control=NULL,

14

+ orderGrp=c("vx","zx","yzr","rxi"),
+ file="kruskalBoxplot.pdf")

6.3 Correlation plots
If you want to correlate the protein expression or phosphorylation status to numeric sample at-
tributes, you can use the test.correlation function (a wrapper for cor.test). Define
the correlation method with the method.cor argument and the method to correct the p-values
for multiple testing in method.padj. A PDF will be generated in the current working directory.

> ## load data set
> dataDir <- system.file("data",package="RPPanalyzer")
> setwd(dataDir)
> load("dataIII.RData")
> data(dataIII)
> ## normalize data
> n.data <- normalizeRPPA(dataIII,method="row")
> ## aggregate replicates
> cl.data <- sample.median(n.data)
> ## test correlation
> test.correlation(cl.data,param="concentration",method.cor="kendall",
+ method.padj="BH",file="correlation_plot.pdf")

6.4 Heatmaps
A common method to present high dimensional biological data are heatmaps. The RPP-
analyzer provides a function to plot heatmaps annotated with any sample attribute in or-
der to check if the sample attribute corresponds to the clustering. Thereby the parameter
sampledescription defines which information is used for grouping the samples. To ensure
a stable and meaningful clustering, removing control arrays and arrays of bad quality by
remove.arrays is a recommended preceding step. It is also recommended to apply the
logList function to the data before plotting to logarithmize (log2) the first two RPPA list
elements, i.e. foreground and background signal intensities.

> ## load data set
> dataDir <- system.file("data",package="RPPanalyzer")
> setwd(dataDir)
> load("dataIII.RData")
> data(dataIII)
> ## aggregate replicates
> dataIII_median <- sample.median(dataIII)
> ## plot heatmap
> rppaList2Heatmap(dataIII_median)

15

7 Appendix
This appendix contains the source code to the Super Curve functionality. If one wants to use
this, just paste the functions below into your R-script, load the RPPanalyzer package and go
on.

#'
#' calcSuperCurve.R
#'
#' Uses the package SuperCurve to perform the quantification
#'

#'
#' calcSuperCurve
#' uses the package SuperCurve for quantification
#'
calcSuperCurve <- function(x,model="cobs", method="nlrq", sample.id=c("sample","sample.n"),sel=c("measurement","control"),
dilution="dilution", block.design, plot=T) {

at first use create.ID.col to create unique identifiers
xi <- create.ID.col(x,sample.id=sample.id)

get only the real measurements, don't fit blank spots and buffer
xi <- select.sample.group(xi,params=list("sample_type"=sel))

get the unique IDs
id <- unique(as.character(xi[[4]]$identifier))

create a matrix of the fittet relative expression values
since we do a fit for every array the no. of columns is equal to

the no. of columns of the raw expression matrix
the no. of rows is equal to the length of unique(id)
vals <- matrix(NA, ncol=ncol(xi[[1]]), nrow=length(id))
colnames(vals) <- colnames(xi[[1]])
rownames(vals) <- id

iterate over all arrays and get an individual fit
this is the main loop
for(i in 1:ncol(xi[[1]])) {

cat("Fit SuperCurve model for array:", xi[[3]]["target",i], "\n")
cat("SuperCurve model:", model, "\n")
cat("SuperCurve fit method:", method, "\n")

16

create an RPPA object
rppa <- createRPPAObject(xi, i, block.design)

create an RPPA Design Object
rppaDesign <- createRPPDesignObject(rppa, xi, dilution)

do the fit
fit <- RPPAFit(rppa=rppa, design=rppaDesign, measure="Mean.Net",

model=model, method=method)
#fit <- try(do.call("RPPAFit", args=list(rppa=rppa, design=rppaDesign,

#measure="Mean.net", model=model, method=method)))

#if(inherits(fit,"try-error")) {

#stop("This function requires the package SuperCurve.
#Please install it
#from 'http://bioinformatics.mdanderson.org/Software/OOMPA/'.")

#}

plot the fit if wanted
if(plot) {

main=c(paste("Target:",xi[[3]]["target",i]),
paste("Antibody:", xi[[3]]["AB_ID",i]), paste("Model:", model))

plot(fit, main=main)

}

order the results according to our sampledescription
conc <- as.numeric(fit@concentrations)
m <- match(rownames(vals), names(fit@concentrations), nomatch=0)
if(any(m==0)) {

stop("For some samples there was no model fit. Something went wrong!")
}

conc <- conc[m]

vals[,i] <- conc

cat("Finished!\n\n")

}

17

get only these entries from each dilution series with the highest concentration
we will need the sampledescription of this
tempDat <- pick.high.conc(xi,sample.id = sample.id)

pick the lines of the sample description matching to our fitted values
m <- match(rownames(vals), tempDat[[4]]$identifier)
discarding columns like concentration, dilution, Block, etc.
these information don't make sense any longer
n <- colnames(tempDat[[4]]) %in% c("concentration", "dilution",

"Block", "Column", "Row")
sampleDesc <- tempDat[[4]][m,!n]

set rownames of vals to the sample IDs
rownames(vals) <- sampleDesc$ID

assemble new RPPA data list for return
ret <- tempDat
ret[[1]] <- vals
ret[[2]] <- vals
ret[[4]] <- sampleDesc

set new names
namesRet <- names(ret)
namesRet[1] <- "expression"
namesRet[2] <- "dummy"
names(ret) <- namesRet

return the result
return(ret)

}

#'
#' createRPPAObject
#'
#' creates an RPPA object used in SuperCurve
#' @param x: the RPPA data list
#' @param arrayIdx: the index of the array, the RPPA object is created
#'
createRPPAObject <- function(x, arrayIdx, block.design) {

the bg corrected expression values of the samples
of the specified array

18

Mean.Net <- x[[1]][,arrayIdx]

the names of the samples
Sample <- x[[4]][,"identifier"]

now we calculate the main row and the main col
we use this terms to determine the rows and cols of the clocks
note: the blocks are ordered rowwise, e.g 16 blocks
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

first the Main.Row, it can be expressed as
(block-1) div (number of cols in the blockdesign) + 1
Main.Row <- ((x[[4]][,"Block"]-1) %/% block.design[2]) + 1

second the columns which can be expressed as
(block-1) mod (number of cols in the blockdesign) + 1
Main.Col <- ((x[[4]][,"Block"]-1) %% block.design[2]) + 1

now we can copy our Col and Row information as Sub.Col and Sub.Row
Sub.Row <- x[[4]][,"Row"]
Sub.Col <- x[[4]][,"Column"]

finally create data.frame
data <- data.frame(Main.Row=Main.Row, Main.Col=Main.Col,
Sub.Row=Sub.Row, Sub.Col=Sub.Col, Sample=Sample,
Mean.Net=Mean.Net)

now define the file and the antibody atribute of the RPPA object
file <- x[[3]]["gpr",arrayIdx]
antibody <- x[[3]]["target",arrayIdx]

return the new created class RPPA
return(new("RPPA", data=data, file=file, antibody=antibody))

}

And here is the Rd source for the calcSuperCurve function:

\name{calcSuperCurve}

19

\alias{calcSuperCurve}

\title{ Calculates the concentration of serial diluted samples}

\description{
Calculates the protein concentration of a serial diluted sample
stored in an RPPA data list using quantification methods implemented
in the SuperCurve package (Coombes et. al, 2009).
}

\usage{
calcSuperCurve(x,model="cobs", method="nlrq",
sample.id=c("sample","sample.n"),sel=c("measurement","control"),
dilution="dilution", block.design, plot=T)

}

\arguments{
\item{x}{RPPA data list with replicates aggregated with median }
\item{model}{The model used by the SuperCurve package. Has to
be either "cobs", "logistic" or "loess".}
\item{method}{The method used for fitting the model. Has to be
"nlrq", "nlrob" or "nls".}
\item{sample.id}{Attributes to identify the samples}
\item{sel}{The sample type that should be calculated. Has to be
"measurements","control", "neg_control",or "blank".}
\item{dilution}{Name of the column in the feature data matrix
describing the dilution steps of the samples.}
\item{block.design}{Vector with two elements. Describes how the blocks
are arranged on the array. The first element specifies the number of
rows, the second the number of columns. The blocks are supposed to be
arranged row by row in the grid.}
\item{plot}{Logical. If true, model fits are plotted }

}

\details{
This method is wrapper function to give the user access to the
quantification methods implemented in the SuperCurve package. The
package can be installed from
\url{http://bioinformatics.mdanderson.org/Software/OOMPA/}.
}

\value{

\item{expression}{matrix with expression values}
\item{error}{matrix with error values}

20

\item{arraydescription}{data frame with feature data}
\item{sampledescription}{data frame with pheno data}

}

\references{Coombes et. al, 2009, SuperCurve: SuperCurve Package

Hu et al., Bioinformatics 2007,
Non-parametric quantification of protein lysate arrays
}

\author{Stephan Gade <s.gade@dkfz.de> }
\examples{
\dontrun{
library(RPPanalyzer)
data(ser.dil.samples)
}

\dontrun{
predicted.data <- calcSuperCurve(ser.dil.samples, sel=c("measurement"),
block.design=c(1,4))}

}
\keyword{ manip }

References
K. R. Coombes, S. Neeley, C. Joy, J. Hu, K. Baggerly, , and P. Roebuck. SuperCurve: Super-

Curve Package, 2009. R package version 1.3.3.

T. Hastie. gam: Generalized Additive Models, 2009. URL http://CRAN.R-project.
org/package=gam. R package version 1.01.

C. Loebke, H. Sueltmann, C. Schmidt, F. Henjes, S. Wiemann, A. Poustka, and U. Korf.
Infrared-based protein detection arrays for quantitative proteomics. Proteomics, 7(4):558–
64, Feb 2007. doi: 10.1002/pmic.200600757. URL http://www3.interscience.
wiley.com/journal/114123572/abstract.

C. P. Paweletz, L. Charboneau, V. E. Bichsel, N. L. Simone, T. Chen, J. W. Gillespie, M. R.
Emmert-Buck, M. J. Roth, E. F. P. III, and L. A. Liotta. Reverse phase protein microarrays
which capture disease progression show activation of pro-survival pathways at the cancer
invasion front. Oncogene, 20(16):1981–1989, Apr 2001. doi: 10.1038/sj.onc.1204265.
URL http://dx.doi.org/10.1038/sj.onc.1204265.

G. K. Smyth. Limma: linear models for microarray data. In R. Gentleman, V. Carey, S. Dudoit,

21

http://CRAN.R-project.org/package=gam
http://CRAN.R-project.org/package=gam
http://www3.interscience.wiley.com/journal/114123572/abstract
http://www3.interscience.wiley.com/journal/114123572/abstract
http://dx.doi.org/10.1038/sj.onc.1204265

and W. H. R. Irizarry, editors, Bioinformatics and Computational Biology Solutions using
R and Bioconductor, pages 397–420. Springer, New York, 2005.

B. Spurrier, S. Ramalingam, and S. Nishizuka. Reverse-phase protein lysate microarrays for
cell signaling analysis. Nat Protoc, 3(11):1796–808, Jan 2008. doi: 10.1038/nprot.2008.
179. URL http://www.nature.com/nprot/journal/v3/n11/abs/nprot.
2008.179.html.

L. Zhang, Q. Wei, L. Mao, W. Liu, G. Mills, and K. Coombes. Serial dilution curve: a new
method for analysis of reverse phase protein array data. Bioinformatics, Jan 2009. doi: 10.
1093/bioinformatics/btn663. URL http://bioinformatics.oxfordjournals.
org/cgi/reprint/btn663v1.

22

http://www.nature.com/nprot/journal/v3/n11/abs/nprot.2008.179.html
http://www.nature.com/nprot/journal/v3/n11/abs/nprot.2008.179.html
http://bioinformatics.oxfordjournals.org/cgi/reprint/btn663v1
http://bioinformatics.oxfordjournals.org/cgi/reprint/btn663v1

	Introduction
	Data preparation
	Sample description
	Columns plate, row and column
	Column sample_type
	Column sample
	Columns concentration, dilution and dilSeriesID

	Slide description
	Column gpr
	Columns pad, slide, incubation_run and spotting_run
	Columns target and AB_ID

	Image analysis result files

	Data pre-processing
	Read data
	Export data as text file
	Correct for background intensities
	Data normalization with total protein dye
	Quality control plots

	Additional correction, quantification and normalization methods
	Correct for background intensities
	Quantify concentration
	Data normalization
	Total protein dyes
	Housekeeping proteins
	Median normalization
	Protein quantification assays

	Array and data selection
	Visualizations
	Time courses
	Boxplots
	Correlation plots
	Heatmaps

	Appendix

